

AREA 4

Terapie dell'infiammazione polmonare

Progetto FFC#20/2020

L'inibizione selettiva di HDAC6 quale nuova strategia per combattere l'infiammazione e il rimodellamento fibrotico nella fibrosi cistica

Partner: Lucia Altucci
(Università degli Studi della Campania
Luigi Vanvitelli, Dip. di Medicina di
Precisione)

ຕໍ່ຕໍ່ຕໍ່

© Qual è la durata dello studio: 1 anno

Perché è importante

Le persone con fibrosi cistica (FC) hanno la tendenza a sviluppare infezioni croniche causate da *Pseudomonas aeruginosa* (Pa), con conseguenze anche molto gravi. Gli attuali trattamenti antinfiammatori si limitano al controllo sintomatico dell'infiammazione delle vie aeree associata a FC, pertanto sono urgentemente necessarie nuove ed efficaci opzioni terapeutiche per mitigare il processo infiammatorio nella FC.

Che cosa hanno usato i ricercatori

L'enzima istone deacetilasi 6 (HDAC6) è coinvolto nei meccanismi patologici associati all'infiammazione e alla fibrosi del polmone. Si è visto che la funzione di questo enzima può essere inibita attraverso piccole molecole con elevata potenza e selettività. Per testare questi inibitori sono stati usati modelli animali di infezione cronica da *Pseudomonas aeruginosa* in collaborazione con il <u>CFaCore (Cystic Fibrosis Animal Core Facility)</u> di FFC Ricerca.

Che cosa hanno fatto i ricercatori

Sono stati selezionati alcuni inibitori di HDAC6 già noti in letteratura scientifica e ne sono state valutate la potenza, selettività e solubilità. Inoltre, per verificarne *in vivo* la tossicità e l'effetto su batteri e infiammazione, gli inibitori sono stati testati su modelli animali.

Infine, nuovi inibitori di HDAC6 sono stati progettati, sintetizzati e ottimizzati chimicamente. I più promettenti sono stati testati tramite saggi biochimici per valutarne l'efficacia di inibizione su HDAC6 e la selettività per il bersaglio.

Che cosa hanno ottenuto

È stata dimostrata l'efficacia *in vivo* (su modelli animali) degli inibitori di HDAC6 sull'infiammazione e l'infezione polmonare da *Pseudomonas aeruginosa*. Sono stati sviluppati nuovi inibitori dotati di un'elevata selettività HDAC6 e proprietà farmacocinetiche ottimizzate.

Che cosa succederà ora

I risultati offrono ottime prospettive per fornire una nuova opzione terapeutica per l'infiammazione associata a FC, da usare potenzialmente in co-somministrazione con i farmaci modulatori di CFTR attualmente disponibili. Inoltre, i dati sulla biodistribuzione supportano anche un uso cronico degli inibitori di HDAC6 attraverso la somministrazione via aerosol.

Per quanto riguarda i nuovi inibitori, le proprietà strutturali dovranno essere ulteriormente ottimizzate per ottenere un profilo farmacocinetico ideale.

Per saperne di più

La ricerca di un nuovo antinfiammatorio in FC: un inibitore selettivo dell'enzima chiave HDAC6, implicato nell'avvio della risposta infiammatoria polmonare eccessiva in FC

L'obiettivo del progetto è offrire una nuova opzione terapeutica per l'infiammazione associata alla fibrosi cistica (FC). Non si sa infatti se questo dannoso processo possa essere risolto dall'uso di correttori e potenziatori di CFTR, e l'ipotesi più probabile è che insieme a questi nuovi farmaci debbano essere usati più efficaci antinfiammatori. Molto recentemente l'attività di un enzima, l'istone-deacetilasi 6 (HDAC6), è stata correlata a meccanismi patogenetici cruciali, associati sia all'insorgenza di infiammazione polmonare disregolata che di processi fibrotici in FC. HDAC6 rappresenta un nuovo bersaglio biologico, di rilevante interesse, anche perché è possibile inibire la sua funzione attraverso piccole molecole, in parte già note, dotate di elevata potenza e selettività. Il progetto prevede, attraverso l'integrazione di competenze pluridisciplinari (chimica medicinale, farmaceutica, biochimica e biologia molecolare), di selezionare fra queste molecole inibitrici le più promettenti, sintetizzarle, sperimentarle *in vitro* e quindi *in vivo* in modelli animali di infezione polmonare in malattia FC. La prospettiva è ottenere un nuovo composto con attività di corretta regolazione del processo infiammatorio nella fibrosi cistica.

Gli inibitori di HDAC6 sono efficaci su modelli in vivo nel ridurre l'infiammazione e l'infezione polmonare da *Pseudomonas aeruginosa*

Le persone con fibrosi cistica (FC) hanno la tendenza a sviluppare infezioni croniche causate da *Pseudomonas aeruginosa* (Pa). L'infezione cronica catalizza l'insorgenza di infiammazioni, arrangiamenti tissutali incontrollati e fibrosi, con conseguenze gravissime. Gli attuali trattamenti antinfiammatori si limitano al controllo sintomatico dell'infiammazione delle vie aeree associata a FC, pertanto sono urgentemente necessarie nuove ed efficaci opzioni terapeutiche. L'obiettivo del progetto è l'identificazione di una nuova opzione terapeutica per mitigare il processo infiammatorio nella FC.

L'enzima istone deacetilasi 6 (HDAC6) è stato correlato a meccanismi patologici essenziali associati all'infiammazione e alla fibrosi. In particolare, l'inibizione della sua funzione attraverso piccole molecole con elevata potenza e selettività rappresenta una potenziale strategia per combattere il processo infiammatorio associato a FC. Nel progetto:

- 1) sono stati selezionati inibitori noti selettivi per HDAC6 (chiamati HDAC6i) attraverso la valutazione sperimentale di potenza, selettività e solubilità;
- 2) sono stati progettati, sintetizzati, ottimizzati, e testati in saggi biochimici nuovi inibitori di HDAC6 altamente selettivi;
- 3) si è dimostrata per la prima volta l'efficacia *in vivo* di inibitori di HDAC6 sul processo infiammatorio e di infezione in un modello animale di infezione cronica da *Pseudomonas aeruginosa* in collaborazione con il CFaCore (Cystic Fibrosis Animal Core Facility) di FFC Ricerca.

Il successo per la prima volta dell'esperimento *in vivo* di efficacia dell'inibizione selettiva dell'H-DAC6 sia sul fenotipo infiammatorio che su quello infettivo associati a FC valida la solidità dell'i-potesi.

Per saperne di più

Inoltre, è stata sviluppata una serie di nuovi inibitori dotati di un'elevata selettività verso HDAC6. I risultati offrono una prospettiva per sviluppare una nuova opzione terapeutica per l'infiammazione associata alla fibrosi cistica da usare potenzialmente in co-somministratione con i modulatori del canale attualmente disponibili.

Pubblicazioni

Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology Journal of medicinal chemistry, 2022

pubs.acs.org/jme

Perspective

Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology

Published as part of the Journal of Medicinal Chemistry special issue "Epigenetics 2022". Simona Barone,[†] Emilia Cassese,[†] Antonella Ilenia Alfano, Margherita Brindisi,**[‡] and Vincenzo Summa**[‡]

ACKNOWLEDGMENTS

The authors thank Fondazione Fibrosi Cistica (FFC) for financial support through Grant FFC#20/2020: Harnessing selective histone deacetylase 6 (HDAC6) inhibition to tackle inflammation and fibrotic remodeling in cystic fibrosis. We also acknowledge MIUR Grant Dipartimento di Eccellenza 2018—2022 (l. 232/2016) to the Department of Pharmacy, University of Naples Federico II.

Pubblicazioni

Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis

European Journal of Pharmacology, 2022

European Journal of Pharmacology
Volume 936, 5 December 2022, 175349

Efficacy of selective histone deacetylase 6 inhibition in mouse models of *Pseudomonas aeruginosa* infection: A new glimpse for reducing inflammation and infection in cystic fibrosis

Margherita Brindisi.^a ¹ 久 ☒, Simona Barone.^a, Alice Rossi.^b, Emilia Cassese.^a,
Nunzio Del Gaudio.^c, Álvaro Javier Feliz Morel.^d, Gessica Filocamo.^d, Alessia Alberico.^a, Ida De Fino.^b
, Davide Gugliandolo.^b, Mehrad Babaei.^c, Guglielmo Bove.^c, Martina Croce.^e, Camilla Montesano.^e,
Lucia Altucci.^c, Alessandra Bragonzi.^b, Vincenzo Summa.^a ¹ 久 ☒

- ^a Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131, Naples, Italy
- b Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
- ^c Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138. Naples. Italy
- d Exiris s.r.l., Via di Castel Romano, 100, 00128, Rome, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy

Received 6 August 2022, Revised 17 October 2022, Accepted 20 October 2022, Available online 26 October 2022, Version of Record 10 November 2022.

Acknowledgements

The authors thank Fondazione Fibrosi Cistica (FFC) for financial support through Grant FFC#20/2020: Harnessing selective histone deacetylase 6 (HDAC6) inhibition to tackle inflammation and fibrotic remodeling in cystic fibrosis. M.B., V.S., S.B, E.C and A.A also acknowledge MIUR Grant Dipartimento di Eccellenza 2018–2022 (l. 232/2016) to the Department of Pharmacy, University of Naples Federico II. The authors thank VALERE: Vanvitelli per la Ricerca Program: EPInhibitDRUGre (CUP B66J20000680005...

Abstract presentati a congressi scientifici

 HDAC6 Inhibition in cystic fibrosis: in vivo proof-of-concept study antiinflammatory profile, effects on bacterial load, formulation and biodistribution studies

9th BBBB, Ljubljiana, 15-17 September 2022

 The first in vivo proof-of-concept for the efficacy of selective hdac6 inhibition in cystic fibrosis: anti-inflammatory profile, effects on bacterial load, formulation and biodistribution studies

27th NMMC (National Meeting in Medicinal Chemistry), Bari, 11-14 September 2022

Rendiconto economico

AREA 4

Terapie dell'infiammazione polmonare

Progetto FFC#20/2020

L'inibizione selettiva di HDAC6 quale nuova strategia per combattere l'infiammazione e il rimodellamento fibrotico nella fibrosi cistica

Responsabile:
Vincenzo Summa
(Università degli Studi di Napoli Federico II, Dip. di Farmacia)

	$\overline{}$		
((D)	Periodo:	01/09/2020-31/08/2021

(((((((((((((Grant assegnato:	€ 55.000

(Z)	Usato	per:
	Osuto	hei:

- Materiale di consumo	€ 36.287,28	
- Borse di studio	€ 8.710,00	
- Servizi scientifici	€ 7.013,83	
- Consulenze scientifiche	€ 1.830,00	
	6 50 0 4444	

€ 53.841,11

